skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Youngmin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Charge ordering (CO), characterized by a periodic modulation of electron density and lattice distortion, has been a fundamental topic in condensed matter physics, serving as a potential platform for inducing novel functional properties. The charge-ordered phase is known to occur in a doped system with highd-electron occupancy, rather than low occupancy. Here, we report the realization of the charge-ordered phase in electron-doped (100) SrTiO3epitaxial thin films that have the lowestd-electron occupancy i.e.,d1-d0. Theoretical calculation predicts the presence of a metastable CO state in the bulk state of electron-doped SrTiO3. Atomic scale analysis reveals that (100) surface distortion favors electron-lattice coupling for the charge-ordered state, and triggering the stabilization of the CO phase from a correlated metal state. This stabilization extends up to six unit cells from the top surface to the interior. Our approach offers an insight into the means of stabilizing a new phase of matter, extending CO phase to the lowest electron occupancy and encompassing a wide range of 3dtransition metal oxides. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available January 1, 2026
  3. Abstract Our efforts in the chemistry of gold complexes featuring ambiphilic phosphine‐carbenium L/Z‐type ligand have led us to consider the reduction of the carbenium moiety as a means to modulate the gold–carbenium interaction present in these complexes. Here, it was shown that the one‐electron reduction of [(o‐Ph2P(C6H4)Acr)AuCl]+(Acr=9‐N‐methylacridinium) produces a neutral stable radical, the structure of which showed a marked increase in the Au–Acr distance. Related structural changes were observed for the phosphine oxide analogue [(o‐Ph2P(O)(C6H4)Acr]+, the reduction of which interfered with the P=O→carbenium interaction. These structural effects, driven by a reduction‐induced change in the electronic and electrostatic characteristics of the compounds, showed that the charge and accepting properties of the carbenium unit can be modulated. These results highlight the redox‐noninnocence of carbenium Z‐type ligand, a feature that can be exploited to induce specific conformational changes. 
    more » « less